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Capturing intra-urban variation in diesel-related pollution exposures remains a challenge, given its complex
chemical mix, and relatively fewwell-characterized ambient-air tracers for the multiple diesel sources in dense-
ly-populated urban areas. To capture fine-scale spatial resolution (50 × 50 m grid cells) in diesel-related pollu-
tion, we used geographic information systems (GIS) to systematically allocate 36 sampling sites across
downtown Pittsburgh, PA, USA (2.8 km2), cross-stratifying to disentangle source impacts (i.e., truck density,
bus route frequency, total traffic density). For buses, outbound and inbound trips per week were summed by
route and a kernel density was calculated across sites. Programmable monitors collected fine particulate matter
(PM2.5) samples specific toworkweek hours (Monday–Friday, 7 am–7 pm), summer andwinter 2013. Integrated
filters were analyzed for black carbon (BC), elemental carbon (EC), organic carbon (OC), elemental constituents,
and diesel-related organic compounds [i.e., polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes]. To our
knowledge, no studies have collected this suite of pollutants with such high sampling density, with the ability to
capture spatial patterns during specific hours of interest. We hypothesized thatwewould find substantial spatial
variation for each pollutant and significant associations with key sources (e.g. diesel and gasoline vehicles), with
higher concentrations near the center of this small downtown core. Using a forward stepwise approach, we de-
veloped seasonal land use regression (LUR)models for PM2.5, BC, total EC, OC, PAHs, hopanes, steranes, aluminum
(Al), calcium (Ca), and iron (Fe). Within this small domain, greater concentration differences were observed in
most pollutants across sites, on average, than between seasons. Higher PM2.5 and BC concentrations were
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found in the downtown core compared to the boundaries. PAHs, hopanes, and steranes displayeddifferent spatial
patterning across the study area by constituent. Most LUR models suggested a strong influence of bus-related
emissions on pollution gradients. Buses were more dominant predictors compared to truck and vehicular traffic
for several pollutants. Overall, we found substantial variation in diesel-related concentrations in a very small
downtown area, which varied across elemental and organic components.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Fig. 1. Four reference monitoring locations in relation to downtown Pittsburgh study
domain, with terrain and waterways. Reference A = upwind Settlers Park, Reference
B = downwind outside of domain, Reference C = within-domain, Reference D =
within-domain Point State Park.
1. Introduction

Diesel particulate matter (DPM) is a complex mixture of solid parti-
cles (e.g., organic compounds and elemental carbon) and liquid parti-
cles suspended in gas, typically formed from unburned fuel and/or
lubricating oil (Eastwood, 2008). DPM has been identified as a toxic
air contaminant and probable human carcinogen by the EPA, capable
of causing premature death, and cardiovascular and respiratory health
problems (Sydbom et al., 2001; Hesterberg et al., 2012; Kagawa, 2002;
Ristovski et al., 2012). Given generally higher diesel-related exposures
in dense urban areas, DPM has tremendous importance for public
health. To date, however, sampling technologies and analytic tech-
niques have not been able to precisely measure DPMwithin fine partic-
ulatematter (PM2.5), nor to examine spatial variation in DPM exposures
across urban cores during key hours of interest for human exposures
(e.g., during workweek hours, rush hours) (CDC, 2003). To our knowl-
edge, no air pollution studies have assessed a wide variety of organic
and elemental constituents using time-integrated samplers across a
very high sample density. This approach could enrich our understand-
ing of spatial patterning in exposures to diesel-related pollutants.

Because a large portion of DPM is carbon, elemental carbon (EC) or
black carbon (BC, reflectance) have been commonly used as surrogates
(Noll et al., 2007; Cyrys et al., 2003; Keuken et al., 2012). These compo-
nents and most others in DPM, however, are not specific to DPM (CDC,
2003). For example, polycyclic aromatic hydrocarbons (PAHs) also arise
from other transportation and industrial processes with incomplete
combustion (Noth et al., 2011). Hopanes and steranes are present in
crude oil and are used as motor vehicle exhaust markers (Jedynska et
al., 2014). As such, there is a need for more clearly identifying effective
tracers, or tracer suites, associated with diesel emissions in urban areas.

Spatial saturation campaigns across urban areas have been used to
identify key modifiable pollution sources, and to improve air pollution
exposure estimates for epidemiology (Shmool et al., 2014; Tunno et
al., 2015a; Clougherty et al., 2008; Ross et al., 2006; Matte et al., 2013;
Briggs et al., 2000; Basagana et al., 2013). However, relatively few
have focused on organic compounds (Larson et al., 2007; Schulte et al.,
2015). While it is important to characterize full intra-urban gradients,
the saturation design is also well-suited to target specific areas with
complex source mixes. Because these campaigns often cover relatively
large (i.e., ~350 to 2000 km2) and diverse (i.e., urban-suburban) areas,
they may lack the specificity to quantify exposure differences across
smaller areas, or to characterize locally-important emissions sources
(e.g., traffic characteristics, or unusual land use types) (Basagana et al.,
2013). Many prior large LUR studies have been performed at the
urban or metropolitan scale, such as a large New York City study
whichmonitored 150 sites across a 777 km2 area for a sampling density
of 0.19 monitors/km2 (Matte et al., 2013). Our downtown Pittsburgh,
PA, USA study is among the most saturated, with 36 distributed sites
across 2.8 km2 (a density of nearly 13 monitors/km2), drawing out
very fine-scale variation in diesel-related organics across a small down-
town core.

In this paper, we developed and validated a set of methods for high-
ly-saturated (N10 monitors/km2) monitoring for very fine-scale spatial
gradients in diesel-related pollutants – including both organic and ele-
mental particle constituents, during selected hours of the day. We
used land use regression (LUR) methods to examine source-concentra-
tion relationships within this microenvironment, and to identify key
sources which may explain this variation (Clougherty et al., 2007). We
ran geographic information systems (GIS)-based methods to allocate
36 sampling locations across a small (2.8 km2) domain, using cross-
stratification to disentangle impacts of highly-correlated urban vehicu-
lar sources (i.e., truck density, bus route intensity, total traffic density).
Programmable monitors were configured to collect workweek (Mon-
day–Friday 7 am–7 pm) integrated samples of PM2.5, black carbon
(BC), elemental constituents, and diesel-related organic compounds
[e.g., PAHs, hopanes, steranes], and we used LUR modeling methods to
identify key sources explaining spatial variation in each pollutant. We
hypothesized that: (1) highly reproducible integrated measures of
both elemental and organic components of PM2.5 could be captured
during selected hours each day, over the course of one week, (2) that
concentrations for each pollutant would vary substantially across
space, even within this very small area, (3) that spatial patterns and
key sourcesmay differ across pollutants – although eachwas previously
associated with diesel, and (4) that LUR models could identify key
sources explaining this variation.

2. Materials and methods

2.1. Study domain

Our study domain (roughly 2.8 km2) is approximately delineated by
two major waterway systems which converge and confine the down-
town urban core (Fig. 1). The domain boundary includes areas along
the opposing riverbanks, and extends to the northwest, to include key
source locations of interest (e.g., highways, bridges). The domain was
limited to a relatively uniform topography (b274 m above sea level)
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to minimize elevation-related modification of source-concentration
relationships.

2.2. Reference monitors

Given our unique study area – situated among complex terrain,
bounded by steep hillsides at the confluence of three rivers –meteoro-
logical conditions (esp. wind speed and direction) could vary substan-
tially across our study area, altering apparent source-concentration
relationships. For this reason, we allocated four reference sites, moni-
tored every session, in very different locations; a regional background
site (site A) was situated in a county park, approximately 14.5 km up-
wind of the study area. Two reference sites were allocated within the
study area, on opposing sides of one river (sites C, D). The fourth refer-
ence site was sited slightly downwind of the study area (site B), along a
second river valley. Weekly average data across these four sites was
used to: (1) assess whether long-range transport and/ormeteorological
impacts on pollutant concentrations have comparable influence across
all parts of a complex study area, and (2) to temporally adjust concen-
trations at all other spatially distributed sites, each sampled only one
week per season.

2.3. Site selection and allocation

To characterize our sampling domain in initial explorations, we built
andmapped a range of diesel-specific source indicators (e.g., bus routes,
total truck traffic, active railways), gasoline traffic indicators (e.g., total
traffic density, parking lots), and potential modifying factors (e.g., build-
ing height, proximity to rivers). To select sites, we aimed to capture the
spatial variability in traffic, and to distinguish diesel from gasoline emis-
sionsusinghighly-resolvedGIS-based indicators (e.g., total traffic densi-
ty, total truck density, bus route frequency). Pennsylvania Department
of Transportation (PennDOT) Annualized Average Daily Traffic counts
were used to derive a continuous kernel density traffic surface, by ap-
plying a Gaussian decay function to traffic counts along roadways. A
similar approach was taken for total truck density, using Average Daily
Truck Traffic, from the same PennDot dataset. For bus routes, outbound
and inbound trips per week were downloaded from Google Transit and
summed by route (Google, 2013), then used to derive a kernel density
surface. These three surfaceswere used to calculatemean source indica-
tor densities using a small 50 × 50 m lattice grid (n = 1572 cells).

For purposes of site allocation – to ensure some variation in source
influences across sampling sites –we dichotomized each source indica-
tor at the median, then categorized each 50 × 50 m grid cell in the do-
main into binary “high” and “low” source density categories. Using
cross-stratification, we created eight source classes (e.g., high traffic/
high truck/low truck, etc.); by selecting sites evenly across these catego-
ries, we were able to disentangle some effects of these potentially spa-
tially-confounded sources.

We used stratified random sampling (without replacement) to se-
lect 36 spatially-distributed grid cells across the eight source indicator
cross-strata, and collected one sample within each selected cell, each
season. Sample size was determined by resource availability, logistical
limitations, and sample size effective in prior LUR modeling studies
(Shmool et al., 2014; Brauer et al., 2003;Madsen et al., 2007). In each se-
lected grid cell, we identified street-level metal utility poles close to the
cell centroid with (a) no obstructions within threemeters, (b) street ac-
cessibility, (c) three or more meters from buildings, (d) 20 m from bus
stops, and (e) no overhanging tree branches.

To avoid confounding spatial and temporal patterns in concentra-
tions, we randomly allocated distributed sites across sessions, then
reviewed schedules by total traffic density strata to ensure reasonably
even representation across classes each session (e.g., two to three
‘high’ and ‘low’ total traffic density sites per session) (Fig. 2). We sam-
pled five distributed sites per session, and the same sampling schedule
was used for both winter and summer (n= 36). One site was not sam-
pled due to road closure in thewinter, butwas sampled during summer.

2.4. Sampled pollutants and instrumentation

Using portable, programmable ambient air sampling units (Matte et
al., 2013), we collected integrated samples of PM2.5, BC, trace elements,
and organic compounds. Briefly, instrumentation included Harvard Im-
pactors (HIs) (Air Diagnostics and Engineering, Inc., Harrison,ME) using
37 mm Teflon™ filters (PTFE membrane, 2 μm pores, Pall Life Sciences)
housed in weather-tight Pelican boxes to collect PM2.5, BC, and trace el-
ements. We adapted sampling units to collect integrated samples of or-
ganic compounds; in separate weather-tight Pelican boxes, organic
compounds were collected using cyclone-adapted HIs (Air Diagnostics
and Engineering, Inc.) using pre-baked 37 mm quartz fiber filters
(Pallflex Tissuquartz non-heat treated filters, Pall Life Sciences). In
pilot analyses, gravimetric mass of PM2.5 collected on Teflon™ filters
using cyclone-adapted HIs was validated against measures collected
using standard HIs. HOBO data loggers recorded temperature and rela-
tive humidity (Onset Computer Corporation, Bourne, MA). Battery-op-
erated vacuum pumps (SKC, Inc., Eighty-Four, PA) were calibrated to
4.0 LPM and temperature-adjusted based on weather forecasts prior
to deployment, and verified after retrieval. Samplers were mounted ap-
proximately 3 m above street-level strictly on metal utility poles, to
avoid potential contamination by off-gassing volatile organic com-
pounds (VOCs) from treated wooden poles (Gallego et al., 2008).

2.5. Selection of elemental and organic diesel markers

In our prior literature review (Tunno et al., 2015b), 10 elements
were previously associated with diesel exhaust in our region; we
focus on three that were more commonly associated [aluminum (Al)
(Ogulei et al., 2006; Lough & Schauer, 2007), calcium (Ca) (Spencer et
al., 2006; Qin et al., 2006; Schauer et al., 2006), and iron (Fe) (Schauer
et al., 2006; Rizzo & Scheff, 2007)]. To select organic markers, given rel-
atively greater instability of these compounds,we considered additional
criteria, ensuring that each was: (1) previously identified as amarker of
diesel exhaust, (2) quantifiable using thermal desorption gas-chroma-
tography mass-spectrometry (TD-GC–MS) or other GC–MS method
(Chow et al., 2007), and (3) had lower volatility and reactivity relative
to other components of diesel exhaust (e.g., preferably with four or
more aromatic rings and higher molecular weight) (Nielson, 1984).
Our final list included nine PAHs [benz[a]anthracene, benzo[a]pyrene,
benzo[e]pyrene, benzo[ghi]fluoranthene, benzo[ghi]perylene, chrysene,
fluoranthene, indeno[123-cd]pyrene, andpyrene], hopanes (homohopane,
hopane, norhopane, trisnorhopane), and steranes (cholestanes). A few
more reactive compounds (i.e. benz[a]anthracene, benzo[ghi]perylene,
and pyrene) were included for source apportionment (Nielson, 1984;
Galarneau, 2008).

2.6. Field protocols for quartz filters

Due to the greater volatility and reactivity of some organic markers,
increasing the risks of contamination and sample loss, extra precautions
were taken during filter handling in the lab and field. We used pure
quartz filters with no binder or glass fibers to reduce reactions with
acidic gases, which may produce false readings at low particle concen-
trations (Pall Life Sciences, 2015). Prior to deployment, quartz fiber fil-
ters were placed into porcelain dishes using Teflon-coated tweezers
and baked for 4 h at 900 °C (Thermo Scientific Thermolyne oven, Wal-
tham, MA) to remove trace organics, and all cyclone accessories were
cleaned using methanol. Inlets were covered with methanol-cleaned
aluminum foil to avoid passive contamination. During retrieval, the
quartz filter was quickly removed from the cyclone, enclosed in a petri
dish, placed inside an insulated box with ice packs, and covered in foil
to prevent light exposure. Quartz filters were stored in foil-wrapped



Fig. 2.DowntownPittsburghmonitoring locations (n=36) and reference sites byhigh/low class dichotomization (total traffic density, truck traffic density, bus route density). The upwind
reference site outside of the domain (reference site A) is not shown.
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petri dishes at−20 °C, until shipped overnight on ice for analysis. Pilot
testing established that passive time inside the sampler (i.e., overnight
hours) did not interfere with accurate monitoring and characterization
of organic compounds.

2.7. Sampling intervals

Samplers were programmed using a chrontroller (ChronTrol Corpo-
ration, San Diego, CA), and ran continuously each weekday (Monday
through Friday), 7 am to 7 pm, simultaneously across all monitoring lo-
cations. The samefilterwas kept in each sampler throughout theweek –
such that each filter captures 12 h/day, over five days (60 total hours).
Winter sampling was performed from January 14th to March 3rd, and
summer sampling from June 10th to August 2nd, 2013. An additional
eighth session was performed in the summer, to correct for equipment
failure and sample loss at three sites. Deployment and retrieval routes
were optimized to minimize travel time and differences in passive
time for quartz filters inside samplers at each site, before the 7 am
start time.

2.8. Laboratory analyses

Teflon™ filters were pre- and post-weighed within a temperature-
and relative-humidity controlled glove box (PlasLabs Model 890 THC,
Lansing, MI) using an ultramicrobalance (Mettler Toledo Model XP2U,
Columbus, OH) to determine total PM2.5 mass. Reflectometry for BC
was performed using an EEL43M Smokestain Reflectometer (Diffusion
Systems, Ltd., London, UK) and reported in absorbance units (abs). In-
ductively-coupled plasma mass spectrometry (ICP-MS) was conducted
by the Wisconsin State Laboratory of Hygiene following documented
protocols (ESS INO Method 400.4; EPA Method 1638) (Sutton &
Caruso, 1999). For organic carbon and elemental carbon, thermal-opti-
cal reflectance was performed at Desert Research Institute (DRI, Reno,
NV) (Chow et al., 1993). TD-GC–MS was conducted by DRI for the se-
lected organic compounds (Chow et al., 2007).
2.9. Quality assurance and quality control (QA/QC)

To assess potential contamination, we collected laboratory blanks
andmultiple field blanks each session. To assess reproducibility, we de-
ployed an additional unit at four randomly-selected sites each season.
All PM2.5 and organics samples met acceptable pre- and post-collection
flow rateswithin±5% of 4.0 LPM. Co-locatedmeasureswere highly cor-
related for PM2.5, BC, EC, OC, total PAHs, and total steranes (rho = 0.97
to 0.99), and total hopanes (rho = 0.81). Field blanks for multiple pol-
lutants were used to blank-correct all concentrations.

To assess whether concentrations and spatial variation captured
during the Monday–Friday 7 am – 7 pm period differed substantially



Table 1
GIS-based source density indicators used for LUR modeling.

Source category for LUR modeling Covariates examined (25 m to 200 m buffers) Dataset (year of data)

Traffic density indicators

Mean density of annualized average traffic
Mean density traffic (primary and secondary roads)
Number of signaled intersections
Annualized average traffic/Aspect ratio

Pennsylvania Spatial Data Access (PASDA) (2014)
Southwestern Pennsylvania Commission (SPC) (2011)

Road-specific measures

Mean beta index of road complexity and connectivity
Distance to nearest intersection
Number of intersections
Distance to nearest major road
Summed length of primary roadways
Summed length of primary and secondary roadways
Width of roadways

TeleAtlas StreetMap (2014)

PASDA (2014)

Truck, bus, and diesel

Mean density of bus traffic
Distance to nearest bus route
Distance to nearest bus stop
Bus stop use (total number of trips)
Mean density of heavy truck traffic on nearest primary roadway

Google Transit Feed (7/14)

PASDA (2014)

Industrial emissions

Mean density of SO2 emissions
Mean density of PM2.5 emissions
Mean density of NOx emissions
Mean density of VOC emissions

National Emissions Inventory (NEI) (2011)

Land use/built environment

Total area of commercial parcels
Total area of industrial parcels
Total area of industrial and commercial parcels
Distance to nearest park
Summed area of parks
Building counts
Distance to nearest building
Mean percentage of imperviousness

Allegheny County Office of Property Assessments (AC OPA) (2013)

SPC (2011)

Allegheny County Department of Public Works (DPW)
National Land Cover Database (NLCD) (2011)

Transportation facilities

Distance to nearest active railroad
Summed line length of active railroads
Distance to nearest bus depot
Summed area of parking lots and garages
Distance to river centerline

SPC (2011)

Google Transit (2014)
AC OPA (2013)
PASDA (National Hydrography Dataset, 2014)

Potential modifying factors

Structural modifiers
Aspect ratio: building height/roadway width
Mean building heights DPW

Topography
Average elevation
Average slope
Mean percentage of tree canopy

National Elevation Dataset (NED) (2013)
NLCD (2011)

Meteorology

Temperature
Relative humidity
Frequency of inversions

Wind direction
Wind speed

Obtained from sampler

Univ. of Wyoming, Dept. of Atm. Science (2013)
National Oceanic and Atmospheric Association (NOAA) (2013)
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from results under a 7-day (weeklong) sampling paradigm, we co-lo-
cated samplers running for five days (Monday–Friday) or seven days
(full-week) at eight randomly-selected locations each season. Sampling
results were highly correlated (r = 0.96–0.99), and comparable spatial
patterns were observed under each paradigm.

2.10. GIS-based source density indicators

GIS-based covariates were created for a wide range of sources
(Table 1). All covariates were built in terms of distance to a given
source (m), or as total source density within relatively small concen-
tric radial buffers around each monitoring location (radius of 25 to
200 m), given our small sampling area and overlap across buffers
(reducing variability across sampling sites) at larger buffer sizes.
Roadway shapefiles for Pittsburgh (Allegheny County) were obtain-
ed from PennDOT's publicly-available annualized average daily vehi-
cle-count data for primary roadways. Traffic covariates included:
signaled intersections (number of traffic signals within a given buffer
size), mean bus traffic density, mean truck traffic density, and ker-
nel-weighted total traffic density. Bus lines running throughout
downtown Pittsburgh were characterized using Google Transit
data, number of buses per day on each route derived from Port Au-
thority bus schedules, and bus density throughout the areas
calculated by inverse-distance-weighting the bus traffic density on
each line using a kernel density tool. Industrial emissions indicators
for PM2.5 (filterable plus condensable), nitrogen oxides (NOx), sulfur
dioxide (SO2), and volatile organic chemicals (VOCs) were aggregat-
ed from the US EPA's 2011 National Emissions Inventory (NEI) over a
six-county region, and interpolated across our study domain using
inverse distance weighting (EPA, 2011). Land use zones (i.e., com-
mercial, industrial) were calculated using 2012 assessment data
from the Allegheny County Office of Property Assessments. Using
the zonal statistics function in GIS, impervious surface, tree canopy,
parking garages/lots, parks, building densities and heights, and
elevation were also quantified.

2.11. Temporal adjustment

To understand variation in pollutant concentrations across sampling
weeks, we compared trends in concentrations of each pollutant across
the four reference sites, establishing a common temporal pattern
(Fig. 3).

To compare concentrationsmonitored during differentweeks across
distributed sampling sites, adjusting for time-varying meteorology or
long-range transport, we estimated the expected mean at each distrib-
uted site for the entire sampling season. To do so, the observed
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concentration at each distributed sitewas divided by the session-specif-
icmean concentration across the four reference sites, thenmultiplied by
the overall sampling-season mean from the four reference sites, as de-
tailed in (Shmool et al., 2014).

Land-use regression models were constructed for the raw pollutant
concentrations, using theweeklymean concentration from the four ref-
erence sites as a predictor, and sensitivity-tested using the same suite of
source covariates to predict temporally-adjusted concentrations (pro-
ducing a spatial R2).

2.12. Statistical analysis

We calculated descriptive statistics for temporally-adjusted PM2.5

and BC, total EC and OC, trace elements, and organic compound concen-
trations, and examined concentration distributions across the source in-
dicator strata used for site selection, using Spearman correlations. We
assessed site-specific between-season differences using paired t-tests.
Potential statistical outliers (outside of mean ± 3 SD) were identified
and examined. Data analysis and model-building was performed sepa-
rately for PM2.5, BC, total EC, total OC, groups of diesel-related organics
[total PAHs, total hopanes, total steranes], and elements [Al, Ca, and
Fe], for summer and winter seasons.

Prior to LUR model-building, the bivariate Spearman correlation be-
tween each source indicator and each temporally-adjusted pollutant
concentration was examined. The highest correlations between each
pollutant and source category were compiled and further considered
in modeling. These final candidate covariates for pollutant and season-
specific LURmodeling can be found in Supporting information Table S1.

Seasonal LURmodels were derived using manual forward step-wise
linear regression, to predict raw pollutant concentrations, as described
in (Tunno et al., 2015a). Briefly, we first adjusted for background/tem-
poral variation in concentrations, using the mean of the four reference
sites for the sampling session. Candidate covariates (source terms)
with the strongest bivariate correlation with the temporally-adjusted
pollutantwere then incorporated into the regressionmodel, individual-
ly, in descending order by strength of the bivariate correlation. Only
Fig. 3. Co-located monitoring across both seasons indicated high correl
statistically significant covariates (p b 0.05) were retained, and the
model was assessed using the coefficient of determination (R2). Covar-
iates were removed, at any stage, if p-values dropped below 0.05, or the
variance inflation factor (VIF) became N2.0.

To test for modification in source-concentration relationships by
meteorology and structural/topographical characteristics, we tested in-
teraction terms between the retained significant source covariates and
median-dichotomized elevation, aspect ratio (building height/roadway
width), building height, temperature, wind speed, and wind direction.

Model residuals were mapped to identify systematic spatial varia-
tion and locations poorly predicted by the LUR, and to assess any need
for additional source covariates.We examined semivariograms and spa-
tial autocorrelation of residuals using the Moran's I statistic.
2.13. Sensitivity analyses

Final covariate selection in each model was sensitivity-tested using
scatterplots to assessfit between each significant predictor and rawpol-
lutant concentrations, to ensure that candidate covariates captured var-
iability across the full range of the data, not reliant on outliers or
influential points. Tree structures and Random Forest automated
methodswere used to corroborate covariate selection. All candidate co-
variateswere incorporated into the RandomForest, with over 1000 iter-
ations, and the strongest terms in the output matched the correlations
found during LUR model-building. A scatterplot of each retained term
against the residual of the prior model was produced at each step in
the sequentialmodel-building process, to identify and examine outliers.
Model residuals were tested to ensure normality.

To corroboratemodel fit and covariate selection,we employed back-
wards elimination for all models, after including all termswith bivariate
correlations ≥0.30. For cross-validation of LUR predictions, a random
20% of sites (n = 7) were removed from the analysis, and the LUR
model was re-fit and used to predict pollutant concentrations at with-
held sites. Finally, a boot-strapping approach was applied, and we ex-
amined the distribution in R2.
ations and strong reproducibility of results for multiple pollutants.



Fig. 4. PM2.5 concentrations across reference monitoring sites.
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Analyses were performed in SAS v 9.4 (Cary, NC), GIS ArcInfo v 10.1
(ESRI, Redlands, CA), R statistical software v 2.12.1, and Microsoft Excel
2010.
3. Results

We successfully collected all scheduled measurements from the
four reference sites, and measures from all 36 distributed sites for
the summer season. During winter, one scheduled site could not be
sampled due to construction. Only one statistical outlier was identi-
fied, for winter season measurements of total PAHs, hopanes, and
steranes. Strong correlations were found at co-located monitoring
sites (Fig. 3).
Table 2
Temporally-adjusted pollutant concentrations across 36 distributed sites.

Pollutant

Winter (n = 35)

Mean (SD) Range

PM2.5 (μg/m3) 13.22 (2.33) 11.24
BC (abs) 1.49 (0.58) 2.19
Total EC (μg/m3) 1.30 (0.53) 3.37
Total OC (μg/m3) 1.89 (0.55) 2.98

Elemental components (ng/m3)
Al 26.69 (20.84) 84.72
Ba 4.29 (2.57) 10.90
Ca 102.90 (95.94) 359.25
Cr 1.04 (0.51) 1.99
Cu 4.82 (2.50) 10.39
Fe 109.10 (55.31) 221.69
Mg 12.07(9.01) 37.62
P 4.15 (2.04) 8.66
S 611.68 (235.31) 1022.57
Zn 17.07 (12.37) 53.27

PAHs (ng/m3)
Benz[a]anthracene 0.19 (0.07) 0.42
Benzo[a]pyrene 0.19 (0.12) 0.76
Benzo[e]pyrene 0.17 (0.07) 0.41
Benzo[ghi]fluor-anthene 0.12 (0.06) 0.36
Benzo[ghi]perylene 0.16 (0.21) 1.25
Chrysene 0.33(0.09) 0.55
Fluoranthene 0.29 (0.10) 0.40
Indeno[1,2,3-cd]pyrene 0.09 (0.04) 0.22
Pyrene 0.26 (0.11) 0.46
Total PAHs 1.73 (0.65) 3.88

Hopanes and Steranes (ng/m3)
Total hopanes 0.43 (0.27) 1.59
Steranes 0.20 (0.19) 1.15
3.1. Temporal trends across reference monitors

PM2.5 pollutant trends over timewere very similar at each of the four
reference sites (Fig. 4), and highly correlated across time points (n =
15), indicating a consistent temporal pattern in concentrations across
our study area. The upwind monitor (A) correlates strongly with the
downtown reference monitors, but is consistently lower in concentra-
tion. Likewise, for other pollutants, trends were comparable across the
four reference monitors, enabling temporal adjustment as described.

3.2. Summary statistics and spatial patterns

Notably, even across a very small study area, concentrations of PM2.5

and most components displayed more variance across sites than
Summer (n = 36)

p-Value b/w seasonsMean (SD) Range

13.28 (1.99) 9.45 0.84
1.68 (0.64) 3.06 0.002
1.89 (1.09) 6.42 0.01
2.46 (0.62) 2.30 0.0001

35.38 (73.53) 448.71 0.50
4.35 (2.68) 11.71 0.92
96.43 (170.47) 986.12 0.84
1.23 (0.60) 3.22 0.17
5.60 (2.61) 10.50 0.20
127.19 (78.34) 418.74 0.27
11.37 (13.00) 58.40 0.79
4.16 (1.95) 10.63 0.98
901.02 (272.08) 1227.21 b0.0001
18.21 (29.07) 178.59 0.83

0.27(0.29) 1.25 0.11
0.20 (0.20) 0.93 0.81
0.19 (0.09) 0.34 0.21
0.05 (0.07) 0.35 0.001
0.10 (0.09) 0.36 0.15
0.36 (0.20) 1.10 0.40
0.72 (0.85) 4.49 0.004
0.08 (0.04) 0.74 0.55
0.51 (0.55) 2.70 0.01
2.45 (1.89) 9.16 0.04

0.60 (0.34) 1.65 0.02
0.03 (0.03) 0.10 0.003
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between seasons; temporally-adjusted PM2.5 concentrations varied 2-
fold across sites in both seasons, although the mean concentrations
did not differ by season (Table 2). In both seasons, we observed higher
concentrations in the downtown core, and lower concentrations along
the rivers (Fig. 5).

Likewise, we found substantial differences across sites for BC, EC,
and OC, although mean concentrations were higher in summer than
winter (p b 0.01). The diesel-related elements (Al, Ca, Fe), total PAHs,
and hopanes also varied substantially across sites, but not between sea-
sons. Only total steranes differed more between seasons than across
sites, with higher concentrations during winter. For the organic com-
pounds, spatial patterns differed acrossmarkers (Table 2, Supplemental
Fig. S1).

The 5-day (Monday–Friday 7 am–7 pm period) subset of samples
did not spatially differ compared to samples collected over a 7-day
(weeklong) sampling paradigm for either season.
Fig. 5. Temporally-adjusted PM2.5 and BC concentrations (in quintiles) across 36 distributed m
reference sites.
3.3. Correlations across modeled constituents

Pollutants were more strongly correlated during winter than sum-
mer (See Tables S2 and S3, Supporting information). In winter, we
found moderate to high correlations (p b 0.05) among several of the
modeled pollutants, and lower correlations for those constituents with
different spatial patterns.

3.4. LUR model results

Temporal variation, as captured by weekly concentrations at refer-
encemonitors, explained substantial variability in PM2.5 andwintertime
total PAHs, hopanes, and steranes.

In winter, PM2.5 was predicted by mean bus density. For summer,
measured PM2.5 was predicted bymean bus density and area of parking
garages (Table 3). A greater proportion of variability in PM2.5 was
onitoring sites for winter and summer sampling. Asterisks denote the two within-domain



Table 3
LUR model fits for winter and summer PM2.5, BC, EC, and OC.

LUR model

Covariates β (p-value)
IQR conc.
increasea

Seq
R2b

Winter PM2.5

(μg/m3)

Intercept 2.62 (0.07) – –

Weekly ref. PM
0.88
(b0.0001)

– 0.57

Mean bus density, 200 m
2.2 × 10−8

(0.0002)
2.01 0.72

Winter BC
(abs)

Intercept −0.06 (0.90) – –
Weekly ref. BC 1.26 (0.03) – 0.19

Mean bus density, 200 m
7.0 × 10−9

(b0.0001)
0.64 0.59

Winter EC
(μg/m3)

Intercept −0.24 (0.50) – –
Weekly ref. EC 1.34 (0.004) – 0.23

Mean bus density, 200 m
6.0 × 10−9

(b0.0001)
0.55 0.60

Winter OC
(μg/m3)

Intercept −0.05 (0.92) – –
Weekly ref. OC 1.18 (0.003) – 0.23

Bus stop use, 200 m
6.0 × 10−5

(0.05)
0.24 0.52

Building density, 75 m 0.069 (0.003) 0.41 0.64

Summer PM2.5

(μg/m3)

Intercept −0.34 (0.64) – –

Weekly ref. PM
1.06
(b0.0001)

– 0.85

Mean bus density, 50 m
9.0 × 10−9

(b0.0001)
0.89 0.89

Summed area of parking
garages, 125 m

3.2 × 10−6

(0.0002)
1.17 0.93

Summer BC
(abs)

Intercept 0.72 (0.09) – –
Weekly ref. BC 0.60 (0.14) – 0.15

Mean bus density, 50 m
4.6 × 10−9

(b0.0001)
0.40 0.58

Summer EC
(μg/m3)

Intercept 0.38 (0.40) – –
Weekly ref. EC 0.81 (0.03) – 0.004

Mean bus density, 50 m
6.1 × 10−9

(b0.0001)
0.60 0.64

Summer OC
(μg/m3)

Intercept 0.99 (0.02) – –
Weekly ref. OC 0.65 (0.003) – 0.18

Bus stop use, 125 m
2.0 × 10−4

(0.01)
0.28 0.36

a IQR concentration increase = β*IQR of source indicator.
b Seq R2 is the sequential model fit for each additional term incorporated into model.
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explained by meteorology during summer than winter (85% vs. 57%). A
greater increase in PM2.5 concentrations was attributable to bus density
in winter than summer (2.01 vs 0.89 μg/m3 in PM2.5, with a 1-IQR in-
crease in bus density). Between seasons, the best bus density indicator
differed in buffer size (i.e. winter = 200 m vs. summer = 50 m).

Winter and summertime LURmodels for BC both included bus den-
sity terms. Similar proportions of variability (R2) in BC concentrations
were explained by LUR terms in both seasons, with a greater proportion
attributable to bus density in winter.

For EC, model terms were identical to those in the BC models for
both seasons, although the proportion attributable to temporal varia-
tion was much less in the summer than in winter (sequential R2 =
0.004 vs. 0.23, respectively). For OC, bus stop use was included in both
models, although a higher percentage of variability was explained in
the winter model.

We identified substantial differences in the models for season-spe-
cific concentrations of organic compoundgroups. Greater temporal con-
tributions were found during winter than summer for all three organics
measures (Table 4). In contrast, bus density terms predicted summer-
time organic concentrations. For total PAHs, the spatial patternwas pre-
dicted by mean bus density. For total hopanes, mean bus density and
mean truck density explained additional variability. For total steranes,
bus stop use predicted additional variability.

We found substantial differences in LUR models for season-specific
elemental constituents (Table 5). In the winter, temporal variation ex-
plained minimal variation in contributions (R2 = 0.01 to 0.04), and
only bus density explained spatial variability in Al concentrations. In
the summer, bus terms were significant for each model. For Al, the spa-
tial pattern was predicted by bus stop use and parking garage area; the
Camodelwas similar. For Fe, the spatial patternwas explained bymean
bus density and parking garage density.

No spatial source terms explained additional variability in thewinter
organic compounds. Winter concentrations of total hopanes correlated
with bus stop use (rho= 0.36) and truck density (rho= 0.43). Winter
total steranes correlated with bus stop use within 200 m (rho = 0.52),
although none of these terms were retained in final models, after ad-
justment for temporal variation. This trend held true forwinter elemen-
tal constituents Ca and Fe, in which only bus density (rho= 0.34) had a
modest correlation to Ca.

3.5. Sensitivity analyses

All models were robust to the removal of outliers and influential
points. Tree structures and Random Forest automated methods corrob-
orated final covariate selection. Moran's I analyses indicated no spatial
autocorrelation in model residuals. Removing a randomly-selected sub-
set (20%) of monitoring sites did not significantly change any of the
eight models; predicted concentrations at the validation sites were
within 10% of measured concentrations.

4. Discussion

Greater variation in concentrations of PM2.5 and most constituents
was observed across sites than between seasons – even within this
small sampling domain. Although the range of concentrations and spa-
tial patterning differed by pollutant, LUR models generally predicted
higher concentrations in areas of greater diesel activity, particularly
bus route intensity and bus stop use. Though general traffic, truck traffic,
and bus traffic each correlated with the majority of our pollutants, the
bus effect on pollutant models was substantial and consistent across
multiple pollutants. Buses impacted our study areamuchmore strongly
than general traffic and trucks. It is possible that our bus metric was a
better-built indicator than others in our dataset (Google Transit vs.
PennDot data, with inverse-distanceweighting), althoughmultiple pol-
lutants are most elevated within the downtown core, where bus traffic
is most predominant, substantiating a strong spatial correlation.
For PM2.5 and diesel-related trace elements such as Al, Ca, and Fe, no
significant differences in concentrations were observed between the
summer and winter seasons, possibly due to consistent bus schedules
and commuter traffic patterns throughout the year. The consistent traf-
fic patterningmay be a plausible reason why the constituent patterning
was similar in both seasons for multiple pollutants, with the differences
occurring due to varying wind speeds throughout the river valleys and
street canyon effects within the downtown core. Furthermore, the
small subset of 5-day vs. 7-day samples showed no differences in spatial
patterning, indicating that much of the spatial variation in pollution in
this area may occur during workweek hours.

Because Pittsburgh is situated among complex terrain, meteorology
plays a substantial role in both temporal and observed spatial variations.
Duringwinter, lowermixing heights may have trapped pollutants fairly
consistently across our relatively flat downtown core, surrounded by
rivers and steep escarpments. This interaction between meteorology
and terrain – observed to impact spatial patterns in PM2.5 and spatial
patterns in composition in our prior citywide studies (Shmool et al.,
2014; Tunno et al., 2015a; Nielson, 1984) – may have effectively de-
creased spatial variance within this small area during winter, and in-
creased the relative influence of the temporal term.

An important (though common) limitationwas our lack ofmeteoro-
logical (i.e., windspeed and direction) data at each sampling location,
limiting our ability to differentiate spatial variance in source effects
(e.g., traffic emissions) from structural aspects related to pollutant dis-
persion (e.g, street canyons). Using regional meteorological data, we



Table 4
LUR model fits for winter and summer total PAHs, total hopanes, and total steranes.

LUR Model

Covariates β (p-value) IQR conc. increase Seq R2

Winter total PAHsa (ng/m3)
Intercept 0.01 (0.95) – –
Weekly Ref. PAHs 1.21 (b0.0001) – 0.78

Winter total hopanesa (ng/m3)
Intercept 0.09 (0.11) – –
Weekly Ref. hopanes 1.17 (b0.0001) – 0.49

Winter total steranesa (ng/m3)
Intercept 0.04 (0.08) – –
Weekly Ref. steranes 1.35 (b0.0001) – 0.52

Summer total PAHs (ng/m3)

Intercept −0.16 (0.64) – –

Weekly Ref. PAHs
1.13
(b0.0001)

– 0.41

Mean bus density, 100 m 1.2 × 10−8 (b0.0001) 0.89 0.66

Summer total hopanes (ng/m3)

Intercept −0.13 (0.28) – –
Weekly Ref. hopanes 1.87 (0.0002) – 0.34
Mean bus density, 100 m 2.0 × 10−9 (0.05) 0.15 0.55
Mean truck density, 175 m 2.5 × 10−5 (0.04) 0.16 0.61

Summer total steranes (ng/m3)
Intercept 0.008 (0.61) – –
Weekly Ref. steranes 0.88 (0.19) – 0.01
Bus stop use, 200 m 1.7 × 10−5 (0.001) 0.06 0.43

a One outlier removed from LUR analysis.
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did not find that either it or elevation gradients modified apparent
source-concentration relationships.

Another limitation of our study, also common to many LURs, is lim-
ited temporal resolution in source emissions indicators (e.g., annual
emissions in NEI data), which is temporally misaligned with our sum-
mer and winter sampling periods.

A clear strength of our campaign was the technological capacity to
collect filter-based measures across a large number of sites, using pro-
grammable units capturing only workweek (Monday–Friday, 7 am–7
pm) hours, capturing reproducible measures of trace organic and ele-
mental constituents. Finally, we were able to capture contemporaneous
measures of BC, EC, and OC from all of our sites; because DPM is pre-
dominantly carbon, BC is commonly used as a relatively easy-to-mea-
sure surrogate for DPM. BC absorbance and EC (thermal-optical) were
highly correlated during both summer (rho = 0.95) and winter
(rho = 0.95), validating the use of BC as a marker for capturing spatial
variance in EC, in our setting.

The data suggests a strong influence of bus-related emissions in the
sampled area, especially in the central part of downtown,where there is
most congestion and the highest concentration of the public workforce.
Signaled intersections also predicted substantial variability in several
pollutants, in keeping with the greater prevalence of traffic lights and
Table 5
LUR model fits for winter and summer diesel-related Al, Ca, and Fe concentrations.

LUR model

Covariates

Winter Al (ng/m3)
Intercept
Weekly Ref. Al
Mean bus density, 50 m

Winter Ca (ng/m3)
Intercept
Weekly Ref. Ca

Winter Fe (ng/m3)
Intercept
Weekly Ref. Fe

Summer Al (ng/m3)a

Intercept
Weekly Ref. Al
Bus stop use, 100 m
Summed area of parking garages, 175 m

Summer Ca (ng/m3)a

Intercept
Weekly Ref. Ca
Bus stop use, 100 m
Summed area of parking garages, 150 m

Summer Fe (ng/m3)a

Intercept
Weekly Ref. Fe
Mean bus density, 50 m
Summed area of parking garages, 175 m

a One outlier removed from LUR analysis.
vehicle idling in the downtown core. Currently, the Port Authority of Al-
legheny County – the 16th largest public transit agency in the United
States, with a fleet of over 700 buses, including 32 hybrid diesel-electric
buses – is in the process of updating its fleet to cleaner technologies. All
Port Authority buses will be model year 2007 or later by 2020 (Port
Authority of Allegheny County, 2013). Other potential interventions
which could be explored include re-routing some buses from the
dense core with many street canyons trapping pollutants, to the more
open perimeters of the small downtown, where winds could better dis-
perse pollutants along the river valleys (albeit in balancing concerns of
bus access and convenience). Other interventions could include
relocating bus stops to improve traffic flow, adding sensors to improve
the timing of traffic lights according to bus flow, and reducing direct
human exposures by minimizing bus idling alongside bus stops.

The current study is the most saturated, to our knowledge, with 36
distributed sites across 2.8 km2 (a density of nearly 13 monitors/km2),
drawing out very fine-scale variation in diesel-related organics across
a small downtown core. In contrast, many prior large LUR studies
have been performed at the urban or metropolitan scale; a large New
York City study monitored 150 sites across a 777 km2 area (0.19 moni-
tors/km2), 23 sites were sampled across 98,500 km2 in Los Angeles
(0.0002 monitors/km2), and 80 sites were sampled across 2199 km2
β (p-value) IQR conc. increase Seq R2

16.58 (0.001) – –
−0.16 (0.60) – 0.01
5.0 × 10−8 (0.01) 4.97 0.20
80.78 (b0.0001) – –
−0.38 (0.49) – 0.01
63.45 (0.05) – –
0.53 (0.27) – 0.04
−14.15 (0.13) – –
1.31 (0.01) – 0.18
9.3 × 10−3 (0.003) 7.10 0.35
1.8 × 10−5 (0.004) 9.33 0.50
−9.14 (0.57) – –
38.40 (0.01) – 0.10
0.026 (0.001) 19.86 0.35
5.7 × 10−5 (0.01) 26.01 0.49
−20.97 (0.31) – –
1.29 (b0.0001) – 0.48
1.5 × 10−7 (0.02) 15.69 0.56
3.4 × 10−5 (0.02) 17.62 0.63
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in Vancouver (0.04 sites/km2) (Matte et al., 2013; Moore et al., 2007;
Abernethy et al., 2013). The ESCAPE studies across Europe performed
LUR modeling using 20 measurements of PM and particle
composition,distributed across each of 20 urban study areas of varying
size (Eeftens et al., 2012; Wang et al., 2013; de Hoogh et al., 2013).

In sum, we found substantial spatial variation in PM2.5, elemental,
and organic components during workweek hours with higher concen-
trations in most pollutants near the center of the downtown core,
with substantial bus traffic. Greater variation was found across sites
than between seasons, even across this very small area. Measures of
bus traffic and bus stop use explained spatial variation in most pollut-
ants, particularly during summer months and at a smaller buffer size,
potentially indicating less dispersion. Better understanding spatial vari-
ation, during specific hours of peak exposures (i.e., duringworkweek or
commuting hours), across awide suite of elemental and organic compo-
nents, can improve air pollution exposure assessment for urban popula-
tions, and more clearly point to effective interventions for reducing
population exposures and improving population health.
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