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INTRODUCTION: 

  
Diesel-related particulate matter (DPM) has been associated with cancer and other chronic disease 

outcomes, and thus may pose a significant health risk to residents of Allegheny County.  Further, 

DPM exposures may be particularly high in Downtown Pittsburgh, given a high daytime worker 

population and heavy traffic activity where a large number of bus lines and truck traffic converge.   

 

It has been unknown, however, the extent to which DPM exposures vary across different parts of 

the downtown core, and which sources drive spatial patterns in concentrations and exposures.  

More clearly identifying these key sources can help to tailor cost-effective interventions, to most 

efficiently reduce population exposures.  

 

Accurately capturing spatial patterns in airborne DPM is complicated by a number of factors: 

 First, DPM is a highly complex chemical mixture of both volatile organic and inorganic 

species.  Although black carbon (BC), elemental carbon (EC), and organic carbon (OC) 

are commonly-used markers, there is no definitive measure, or chemical tracer, for DPM.   

 Second, DPM is emitted from many types of sources (e.g., buses, trucks, trains, etc.), at 

varying temperatures, and in varying combination with other pollution sources (i.e., 

gasoline vehicle traffic).   

 Third, DPM emissions – and thus spatial patterns in exposures -- can differ substantially 

by time of day (e.g., rush-hours vs. full-week measures).   

 Finally, because of the volatility of many DPM components, reactions with other pollutants 

in ambient air – and thus local concentrations and composition – can differ by season, 

meteorology, and the local emissions mixture. 

 

Researchers at the University of Pittsburgh’s Graduate School of Public Health collaborated with 

ACHD to investigate the spatial variation in DPM-related fine particulate matter (PM2.5) 

components, within and across the Downtown Pittsburgh core.  We hypothesized that: 

 

1) Pollution concentrations would differ across the downtown area, and this spatial pattern 

may differ by DPM component. 
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2) Concentrations – and spatial patterns in concentrations -- may differ by season (summer 

vs. winter), and by time of day (“rush hours” vs. “work week” averages). Few studies 

have been designed to capture pollutant spatial variation across differing time periods, 

and our campaign sampled diesel-related pollutants across rush and work-week hours.   

3) Land use regression (LUR) modeling techniques could help to identify which pollution 

sources are most strongly associated with patterns in concentrations. 

4) Source apportionment techniques – which identify pollutants strongly correlated with each 

other – could help to validate chemical tracers for DPM emissions. 

 

This report summarizes key results of a unique two-year air monitoring campaign across 

downtown Pittsburgh.  Few studies have been able capture spatial variation in diesel-related 

organic pollutants, or to differentiate spatial patterns by time of day (e.g., rush hours vs. work-

week hours), as has been done here.  Further information is available in the published and in-press 

manuscripts cited herein. 

 

METHODS: 
 

The study was designed in two phases: 

 

 Phase one (year one) focused on identifying spatial variability (spatial patterns) in the 

concentrations of multiple pollutants across the downtown area, during full “work-week” 

hours (Monday – Friday, 7 am – 7 pm). 

 

 Phase two (year two) compared pollutant concentration and spatial patterns, during “rush-

hour” (Monday - Friday, 5 – 10 am and 3 – 7 pm) vs. “work-week” hours.   

 

Pollutant selection and analysis: We opted to focus on the chemical components of fine 

particulate matter with a diameter of 2.5 micrometers or less (PM2.5), which can penetrate deep 

into the lungs, impacting human health.  

 

Our selection criteria for organic markers required each compound to be: (1) previously identified 

as markers of diesel exhaust; (2) quantifiable using GC-MS analytic methods, and (3) had 

relatively lower volatility, and reactivity, compared to other diesel components. 

 

The final organics marker list included:  

 nine (9) PAHs (benz[a]anthracene, benzo[a]pyrene, benzo[e]pyrene, 

benzo[ghi]fluoranthene, benzo[ghi]perylene, chrysene, fluoranthene, indeno[123-

cd]pyrene, and pyrene) 

 hopanes (homohopane, hopane, norhopane, trisnorhopane) 

 steranes (cholestanes). 

 

Based on the results of a prior literature review (Tunno et al., J Expos Sci Environ Epidem 2015), 

we identified three elemental components of PM2.5 previously associated with diesel emissions -- 

aluminum (Al), calcium (Ca), and iron (Fe) – and included these in the analyses described here. 

 



3 

 

Instrumentation: Harvard Impactors (HIs) with Teflon™ filters housed in weather tight Pelican 

boxes for collection of PM2.5, BC, and trace metals.  In separate boxes, organic compounds were 

collected on quartz filters using HI-adapted cyclones.  Battery-operated vacuum pumps maintained 

a steady flow rate of 4 liters per minute.  The sampling units were originally designed for the New 

York City Community Air Survey (www.nyc.gov/health/nyccas), and were mounted 

approximately 3 meters above street-level, strictly on metal utility poles to avoid contamination 

from treated wood poles, as shown in Figure 1. 

 

Figure 1: Air sampling units mounted on metal utility pole. 

 

Sample analysis: Total PM2.5 mass concentrations were 

determined by gravimetric (filter-weighing) methods inside a 

temperature- and humidity-controlled chamber.  BC 

absorbance was measured via reflectometry. 

 

Organic carbon and elemental carbon concentrations were 

determined via thermal-optical analysis at Desert Research 

Institute (DRI) (Reno, NV). Other organic compounds (PAHs, 

hopanes, steranes) were assessed via thermal desorption gas 

chromatography mass spectrometry (TD-GC-MS) at DRI.  

 

Elemental constituent concentrations were assessed via 

inductively-coupled plasma mass spectrometry (ICP-MS), at 

the Wisconsin State Laboratory of Hygiene, following 

documented protocols.   

 

Sampling domain and site selection: The study domain (~2.8 km2) included the entirety of the 

downtown core, and a portion of the surrounding areas across the Allegheny and Monongahela 

rivers (Figure 2).  

 

Prior to selecting sampling sites, we characterized the full domain using spatial software known 

as geographic information systems (GIS).  In GIS, we mapped, and compare patterns in, a wide 

range of diesel-related sources (e.g., bus routes, heavy truck traffic, active railways) and indicators 

of gasoline traffic (e.g., total traffic density, parking lots).   

 

Because we aimed to disentangle the effects of key diesel sources (i.e., truck traffic, bus traffic) 

from gasoline source (i.e., vehicular traffic), we characterized each 50 m x 50 m grid cell within 

our domain as “high” or “low” in each of these sources.  Merging these indicators created eight 

possible categories, or “source classes.”  We randomly selected four (4) cells from each class; 
these 32 selected sites (shown in Figure 2) capture a wide range of densities in total traffic, truck 

traffic, and bus route densities, and every combination thereof.  Four additional sites were also 

incorporated to capture locations of interest, incl. those with intensive bus activity (e.g., 6th Street, 

Wood Street, Station Square). 

 

http://www.nyc.gov/health/nyccas
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During phase two (Year Two), owing to increased demand on sampling equipment (needing four 

samplers per site per week, instead of two), we reduced the number of sampling sites to 24, 

retaining the same balance across source classes, and coverage across the full study area.   

 

Figure 2: Downtown Pittsburgh 36 monitoring locations, plus reference sites B, C, and D.  

Upwind reference site A at Settlers Cabin Park is not shown.  

 

 
 

 

Reference Sites: Due to equipment limitations, all monitoring sites could not be sampled during 

the same week.  For this reason, we selected four (4) reference sites, to be monitored every week; 

this data enabled us to understand pollution trends over time, and to “adjust” samples collected 

across different weeks.  Three reference sites (B, C, D) are shown in Figure 2.  Reference Site A 

is located upwind, in Settlers Cabin Park. 

 

During Year One, we compared trends in pollutant concentrations measured at all four reference 

monitors, across all study weeks, as shown in Figure 3.  All four sites revealed similar trends, with 

the lowest concentrations observed upwind at Settlers Cabin Park, as expected. 

 

During phase two (Year Two), having already established comparable temporal trends across all 

four (4) reference sites during both summer and winter seasons, we eliminated two (2) reference 
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sites, retaining only the upwind Site A in Settlers Cabin Park and Site D in Point State Park, the 

largest park in the study area, at the nexus of the three rivers. 

 

Figure 3: Temporal trend in PM2.5 across four reference sites, Year 1 

 

 
 

 

Diurnal sampling programs: For Phase One, samplers were programmed to run continuously 

each weekday (Monday - Friday) 7am to 7pm, simultaneously across all monitoring locations. 

Winter sampling was performed from January 14th to March 3rd, and summer sampling from June 

10th to August 2nd, 2013.   

 

During Phase Two, 24 sites were retained, and monitored for contemporaneous “work-week” and 

“rush-hour” samples. This approach enabled site-specific comparisons of full-week (Monday - 

Friday, 7am - 7pm) and “rush-hour” concentrations (Monday - Friday, 5 - 10am and 3 - 7pm).   

 

The “rush” hours were selected to capture hours of peak diesel activity, based on Pennsylvania 

Department of Transportation (PennDOT) hourly traffic counts, and Allegheny County Port 

Authority bus schedules.  Phase two of winter sampling was performed from January 13th to 

February 7th, and summer sampling from July 7th to August 1st, 2014. 

 

Temporal adjustment: To estimate seasonally-representative concentrations, researchers applied 

a temporal adjustment to account for time-varying meteorology between sampling sessions in each 

season.  Specifically, the observed concentration at a given site was divided by the session-specific 

average concentration from the four reference sites, then multiplied by the overall seasonal average 

from the four reference sites.  All concentrations reported in tables and maps in this document, and 

in manuscripts prepared for publication, have been temporally adjusted in this manner. 
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Land use regression (LUR) modeling: LUR examines how measured pollution concentrations 

vary across space, in relation to traffic, buildings, railroads, and other sources.  By comparing 

correlations between concentrations and a wide variety of source indicators (listed in Table 1), the 

method identifies those source indicators which best explain spatial variability in a pollutant of 

interest.  Season-specific LUR models were developed for PM2.5, black carbon (BC), total 

elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), hopanes, 

steranes, aluminum (Al), calcium (Ca), and iron (Fe).   

 

LUR models rely on indicators of air pollution sources (e.g., traffic density, proximity to industry), 

created in GIS.  We created a wide suite of GIS-based covariates to represent an array of source 

indicator categories (Table 1).  All covariates were summarized within circular buffers surrounding 

each monitoring location (25 to 200 meters), and we examined correlations between each source 

term and each pollutant.   

 

Table 1: GIS-based source covariates created and tested in LUR models: 

 
Source category for 

LUR modeling 

Covariates examined (25m to 200m buffers) Data source 

Traffic density 

indicators 

Mean density of annualized average traffic 

Mean density traffic (primary and secondary roads) 

Number of signaled intersections 

 

Annualized average traffic/ Aspect ratio 

Pennsylvania Spatial Data Access 

(PASDA, 2014) 

Southwestern Pennsylvania 

Commission (SPC, 2011) 

Road-specific measures 

Mean beta index of road complexity and connectivity 

Distance to nearest intersection 

Number of intersections 

Distance to nearest major road 

Summed length of primary roadways 

Summed length of primary and secondary 

     roadways 

Width of roadways 

TeleAtlas StreetMap (2014) 

 

 

PASDA (2014) 

Truck, Bus, and Diesel 

Mean density of bus traffic 

Distance to nearest bus route 

Distance to nearest bus stop 

Bus stop use (total number of trips) 

Mean density of heavy truck traffic on nearest 

    primary roadway 

Google Transit Feed (7/14) 

 

 

 

PASDA (2014) 

Industrial emissions 

Mean density of SO2 emissions  

Mean density of PM2.5 emissions 

Mean density of NOx emissions 

Mean density of VOC emissions 

National Emissions Inventory 

(NEI, 2011) 

Land use/ Built 

environment 

Total area of commercial parcels 

Total area of industrial parcels 

Total area of industrial and commercial parcels 

Distance to nearest park 

Summed area of parks 

Building counts 

Distance to nearest building 

Mean percentage of imperviousness 

Allegheny County Office of 

Property Assessments (AC OPA, 

2013) 

 

SPC (2011) 

 

Allegheny County Department of 

Public Works (DPW) 

National Land Cover Database 

(NLCD, 2011) 
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Transportation facilities 

Distance to nearest active railroad 

Summed line length of active railroads 

Distance to nearest bus depot 

Summed area of parking lots and garages 

Distance to river centerline 

SPC (2011) 

 

Google Transit (2014) 

AC OPA (2013) 

PASDA (National Hydrography 

Dataset, 2014) 

 

Potential modifying factors 

Structural modifiers 
Aspect ratio: building height/ roadway width 

Mean building heights 

 

DPW 

Topography 

Average elevation 

Average slope 

Mean percentage of tree canopy 

National Elevation Dataset (NED, 

2013) 

NLCD (2011) 

Meteorology 

Temperature 

Relative humidity 

Frequency of inversions 

 

Wind direction 

Wind speed 

Obtained from sampler 

 

Univ. of Wyoming, Dept. of 

Atmos. Science (2013) 

National Oceanic and 

Atmospheric Association 

(NOAA, 2013) 

 

The first step in our LUR model-building was to account for temporal variation, by incorporating 

the mean concentration from the four reference sites each session into the model.  The GIS-based 

source terms with the strongest correlation with the pollutant were then incorporated, individually, 

in descending order by the strength of correlation. Source covariates were retained in the model 

only if it improved overall model fit, by the coefficient of determination (R2). Any source indicator 

which became non-significant upon inclusion of a new term was removed, in order of descending 

statistical significance (p-value), until all model terms were significant (p < 0.05).  A number of 

statistical sensitivity tests were used to ensure robustness and reproducibility of final models. 

 

Source apportionment/ Factor analysis: A two-stage “source apportionment” analysis was 

performed, using all pollutant measures, each season.  This approach is based on factor analysis, a 

statistical method which identifies groups of highly-correlated pollutants. 

 

In this type of source apportionment, a “factor” is a strongly-correlated group of pollutants which 

share an underlying distribution (in this case, a common spatial pattern) and are generally distinct 

from other groups. The number of factors (groups) allowed was determined using statistical criteria 

(e.g., eigenvalue-one criteria, scree plots). Only factors explaining at least 2% of total 

concentrations variance were retained in final models. To interpret each factor, we identified those 

constituents for which that factor explained greater than 60% of variance, and compared these to 

our existing literature review. 

 

A “factor score” is a location-specific indicator roughly proportional to the sum of concentrations 

for each pollutant loading strongly onto that factor, weighted by its strength of association with 

the underlying pattern that each factor reflects.    

 

We calculated and mapped these “factor scores” for each monitoring site, each season.  Finally, 

using the LUR modeling approach described above, we identified key local sources explaining 
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variance in each factor.  We performed this factor analysis only for Year One (n = 36 sites), as the 

Year Two dataset (n = 24 sites) was statistically under-powered for this approach.  

 

 

RESULTS - Phase One (Spatial variation in multiple pollutants): 
 

Notably, greater variation in PM2.5 and most constituents was observed across sites than between 

seasons – even within this relatively small study area.  Accordingly, mean PM2.5 across all sites 

was similar between seasons.  Of all constituents examined, only steranes displayed greater 

seasonal than spatial variance. 

 

Diesel-related elemental concentrations (i.e., Al, Ca, Fe), likewise, did not significantly differ 

between seasons. For BC, EC, and OC, we observed significantly higher mean concentrations 

during summer than winter.   

 

Table 2: Season-specific concentrations of PM2.5, BC, EC, and OC (Year 1) 
 

 Winter (n = 35) Summer (n = 36)  

Pollutant Mean (SD) Min Max Mean (SD) Min Max p-value for 

difference 

between seasons  

(paired samples) 

PM2.5 (µg/m3) 13.2 (2.33) 9.92 21.2 13.3 (1.99) 11.1 20.5 0.84 

BC (abs) 1.49 (0.58) 0.88 3.07 1.68 (0.64) 0.83 3.89 0.002 

EC (µg/m3) 1.30 (0.53) 0.59 3.96 1.89 (1.09) 0.90 7.32 0.01 

OC (µg/m3) 1.89 (0.55) 1.04 4.02 2.46 (0.62) 1.48 3.78 0.0001 

 

In both seasons, we found similar spatial patterning in PM2.5, BC, EC, and OC, with higher 

concentrations near the center of downtown (Figure 4).  Some PAHs, hopanes, and steranes, 

however, displayed somewhat different spatial patterns.   
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Figure 4: PM2.5 and BC concentrations differed substantially across downtown Pittsburgh. 

 

 
 

  
 

LUR modeling results: In season-specific LUR models, a substantial portion of the total 

variability in measured PM2.5 was explained by temporal variance, comprised of meteorology and 

week-to-week differences in regional concentrations.  PM2.5 was also influenced by mean bus 

density near each site during winter, and by mean bus density and total area of nearby parking 

garages during summer.   

 

Bus density accounted for a greater difference in PM2.5 mass during winter than summer; a one-

interquartile range (IQR) increase (25th to 75th percentile) increase in bus density conferred an 

increase of 2.01 µg/m3 in PM2.5 during winter, vs. only 0.89 µg/m3 during summer).   

 

For BC and EC, both winter and summer LUR models included a significant effect of bus density.  

For OC, bus stop use (total number of scheduled stops per day) was significant in both models.  

 

Substantial differences were observed in season-specific models for organic compounds. For 

winter, we found greater temporal contributions to models for total PAHs, total hopanes, and total 

steranes; no spatial source terms explained the remaining variability.  
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In contrast, bus density terms were significant in summer models for organic compounds.  The 

spatial pattern in total PAHs was predicted by mean bus density. Mean bus density and mean truck 

density explained variation in total hopanes.  Total steranes were predicted by bus stop use.   

 

Substantial seasonal differences were also observed 

in LUR models for trace elements.   During winter, 

temporal contributions were minimal, and bus 

density explained some spatial variability only in Al.  

During summer, bus terms were significant in each 

of the trace element models.  For Al and Ca, the 

spatial pattern was predicted by bus stop use and 

summed area of parking garages.  For Fe, terms for 

mean bus density and total area of parking garages 

were significant.   

Source apportionment results: Source 

apportionment analyses, merging all diesel-related 

constituents described here, plus a larger suite of 

elemental source tracers, identified diesel-related 

factors in both seasons.  

An example of our factor analysis output is shown 

in Figure 5. For these wintertime samples, a 5-factor 

solution explained 88% of overall variability in 

constituent concentrations.  Factor one was 

characterized by several organic compounds 

elsewhere associated with traffic density. Factor two 

was characterized by several elemental constituents 

associated with traffic. Factor three included 

pollutants associated with diesel (BC, fluoranthene, 

NO2, pyrene, total carbon).  Factor four included 

commonly-used tracers for fuel oil (Ni, V).  Factor 

five included pollutants associated with motor 

vehicle emissions (benzene, Cd, La, toluene).   

 

Figure 5: The winter season Year One 5-factor 

solution 
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Figure 6. Spatial patterns and correlations with source indicators for Factor 3 (“diesel”) from 

the winter Year One factor analysis shown in Figure 5. 

 

 
 

 

During winter, high scores for factor 3 (“diesel”) were clustered in the center of the downtown 

core, and were strongly correlated with several bus and traffic-related covariates (listed in Figure 

6).  LUR modeling identified bus density within 50 m and truck density within 200 m as significant 

predictors (R2 = 0.75). 

 

For summer samples, a 9-factor solution explained 88% of variability in constituents.  Factor 1 

was characterized by traffic-related elements and fuel oil (Ni, V).  Factor 2 suggested diesel 

sources (benzo[ghi]fluoranthene, chrysene, Cr, fluoranthene, Mn, pyrene, total carbon, total EC, 

Zn).  Factor 3 also included diesel-related constituents (benz[a]anthracene, BC, hopanes, NO2, 

total PAHs, total steranes).  Factor 4 was characterized by brake/ tire wear markers (Cu, Mo, Sb).  

Factor 5 included benzene and norhopane, whereas factor 6 included benzo[a]pyrene and 

indeno[123-cd]pyrene – all previously associated with diesel exhaust.  Factor 7 included toluene 

and OC.  Factor eight included benzo[e]pyrene. Factor nine included a coal emissions tracer (Se).   

 

In addition to total carbon, both fluoranthene and pyrene were consistently associated with other 

diesel tracers, regardless of season or method – suggesting that these PAHs may be useful tracers 

for diesel-related activities and sources.   
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RESULTS - Phase Two (Rush-hour vs. work-week concentrations): 
 

We found slightly higher mean PM2.5, and significantly higher BC, in rush-hour samples, 

compared full work-week samples, for both summer and winter. Likewise, higher concentrations 

of traffic-related trace elements and diesel-related organics were identified in rush-hour samples.   

 

EC concentrations were moderately higher for rush-hour sampling during summer, and 

significantly so in winter.  For OC, concentrations were slightly higher during rush-hour sampling 

during summer, but not winter.   

 

Many elemental concentrations were non-significantly higher for rush-hour sampling.  During 

winter, we found higher concentrations of traffic and soil/ road dust tracers (i.e., copper, 

manganese, potassium, zinc) -- and higher concentrations of the diesel tracers benz[a]anthracene, 

benzo[e]pyrene, and chrysene -- for the rush-hour program, vs. the full work-week.  

 

During summer, we found significantly higher concentrations of fluoranthene, pyrene, and total 

steranes for the rush-hour program, vs. the full work-week.  
 

 

Figure 7. Spatial variability in measured PM2.5 concentrations. 
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LUR models – rush hour vs. work week: 

For most pollutants, spatial patterns were similar for both rush-hour and work-week samples 

(Figure 7), and both sets of LUR models explained proportions of variability in concentrations.  

Together, these observations suggest that most spatial variance in these pollutants may be 

attributable to diesel and vehicular source activity during rush hours.   

Mean bus density was the strongest spatial predictor in most LURs, regardless of sampling 

interval. The spatial pattern in winter and summer PM2.5 was predicted by mean bus density, for 

both work-week and rush-hour samples.   

For winter BC, the LUR models for both sampling schemes included mean bus density; the 

summer BC models included mean bus density and mean truck density for both sampling schemes.  

For winter and summer, the spatial pattern in EC was predicted by mean bus density for both 

sampling schemes.  For winter OC, the model included bus stop use for both schemes, whereas 

the summer OC work-week model included commercial land use, and the rush-hour model 

included mean truck density.  

For winter, the spatial pattern in total PAHs was predicted by mean bus density for both schemes.  

For summer total PAHs, mean bus density was the sole predictor for work-week sampling, whereas 

bus stop use explained spatial variance in rush-hour samples.   

 

For total hopanes in winter, the model included mean bus density for the work-week sampling 

interval, but no source covariate for the rush-hour scheme.  The summer total hopanes model 

included mean bus density for work-week samples, and mean truck density for rush-hour samples.   

 

The rush-hour spatial pattern in Al, during summer, was predicted by mean truck density; no 

source covariate explained significant variability in work week samples, in either season.   

 

For summer rush-hours, spatial variance in Ca was predicted by mean truck density; no source 

covariates significantly predicted spatial variance in work-week samples.  In winter, rush-hour 

models for Ca included distance to nearest primary road, and work-hour models included mean 

bus density.  

 

For Fe, during summer, the rush-hour model included mean truck density for rush-hour.  The work 

week model included length of primary and secondary roadways. No source covariates were 

significant during winter.  

 

CONCLUSIONS: 
 

We found substantial spatial variation in PM2.5 and chemical components; for most pollutants, we 

found higher concentrations near the center of the downtown core.  Notably, spatial variation was 

greater than seasonal variation for almost all pollutants measured, even across this very small 

downtown area (~2.8 km2). 
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In land use regression (LUR) models for PM2.5, BC, and EC, bus density was the strongest 

predictor of spatial variation, during both summer and winter -- indicating a strong impact of buses 

on pollutant concentrations.   

 

For organic compounds, bus sources were identified in models for summer, but not winter.  Though 

vehicle and truck traffic terms were also spatially correlated with several pollutants, buses 

remained the strongest predictor in most models.   

 

Source apportionment analyses, merging all constituent concentrations, identified diesel-related 

factors in both seasons. During winter, a factor comprised of BC, fluoranthene, nitrogen dioxide 

(NO2), pyrene, and total carbon was predicted by bus and truck-related source terms. For summer, 

a factor including of multiple potential diesel tracers (benzo[ghi]fluoranthene, chromium, 

chrysene, fluoranthene, manganese, pyrene, total carbon, EC, zinc) was predicted by bus-related 

terms.  A factor consisting of benz[a]anthracene, BC, hopanes, NO2, total PAHs, and total steranes 

was associated with truck density.  

 

We found higher concentrations of most pollutants in rush-hour vs. full work-week samples.  

Similar patterns and comparable LUR models for both rush hour and work week measures in most 

pollutants suggests that spatial variance in concentrations for most of the pollutants examined may 

be explained by rush-hour source activity.  

 

Finally, bus traffic and other bus-related terms were the most common spatial predictors in LUR 

models, regardless of season, sampling scheme, or analytic approach (e.g., LUR vs. source 

apportionment) -- suggesting that rush-hour diesel emissions may substantially influence overall 

spatial variance in pollution exposures. 

DISCUSSION/ FUTURE DIRECTIONS: 
 

Our study uncovered several important features of patterning in diesel-relation pollution 

concentrations in the Pittsburgh downtown core. Notably, we found substantial spatial variation in 

concentrations across this small area, which exceeded mean differences between seasons.  We also 

found similar spatial patterns in both seasons, and for both rush-hour and full “work week” 

samples.  A notable exception was in winter vs. summer organics: the former displayed relatively 

flat patterns, potentially due to meteorological differences or to seasonal differences in fuel 

composition, as these sources operate year-round. 

 

We have already secured additional funding from the Mascaro Center for Sustainable Innovation 

at University of Pittsburgh (“Quantifying Reductions in Diesel-Related Air Pollution Exposures 

across Downtown Pittsburgh”) a pilot-scale study aimed at: (1) incorporating nitrogen isotope 

signatures into our analyses, to corroborate diesel sources identification. (Isotope measures were 

collected at all of our sampling sites with Dr. Emily Elliott, University of Pittsburgh Department 

of Geology and Environmental Sciences.), and (2) to perform a literature review to identify 

successful interventions effective elsewhere in removing bus and/ or vehicle-related exposures in 
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dense urban areas, then to work with ACHD and other local agencies to identify effective measures 

appropriate for Pittsburgh. 

 

Nevertheless, patterns did differ for many pollutants – even for pollutants expected to indicate the 

same diesel-related sources – pointing to the possibility of disentangling the impacts of different 

types of diesel sources (e.g., buses vs. trucks) across the downtown area. Two key sources of 

interest we were unable to fully explore – due to current limitations in available source data – were 

railroad and barge traffic.  Accessing data with reasonable spatial and temporal variance on these 

sources (e.g., number and timing of trips per day) may help to further disentangle their effects. 

 

The Port Authority is currently in the process of upgrading the public bus fleet; by 2020, all Port 

Authority buses will be post-2007 technology or later. In 2017, the largest portion of this 

changeover is expected, thus post-fleet changeover monitoring at the same locations may elucidate 

benefits of this intervention. 

 

We found comparable spatial patterns in rush- vs. work-week samples – raising the question of 

whether emissions during non-rush hours have the same spatial pattern as during rush hours, or 

were simply too low, in relative terms, to substantially change filter loadings and observed 

patterns.  As we have now validated and refined these methods to accurately capture even very 

low concentrations of organic and elemental constituents, we may consider the utility of 

monitoring these locations solely during non-rush hours, to compare results. 

 

Street canyons play an important role in pollutant dispersion and entrapment in urban cores. More 

explicit examination of entrapment and enrichment of bus-related emissions within downtown 

street canyons could be a valuable exploration.  

 

Finally, incorporating source-specific dispersion modeling into these models, as we have 

successfully done in prior spatial models (e.g., Michanowicz et al., 2016a; Michanowicz et al., 

2016b) may improve our ability to estimate impacts of sources both inside and outside of the 

sampling domain (e.g., Shenango Coke Works, outside the northern boundary of our sampling 

domain, was in operation throughout our sampling seasons). 
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